7698706837468270733x=1858709718087348710x^2

Simple and best practice solution for 7698706837468270733x=1858709718087348710x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7698706837468270733x=1858709718087348710x^2 equation:



7698706837468270733x=1858709718087348710x^2
We move all terms to the left:
7698706837468270733x-(1858709718087348710x^2)=0
determiningTheFunctionDomain -1858709718087348710x^2+7698706837468270733x=0
a = -1858709718087348710; b = 7698706837468270733; c = 0;
Δ = b2-4ac
Δ = 76987068374682707332-4·(-1858709718087348710)·0
Δ = 5.92700869693E+37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5.92700869693E+37}=7.69870683747E+18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7698706837468270733)-7.69870683747E+18}{2*-1858709718087348710}=\frac{14.8145490202}{-3717419436174697420} =-5.26356049011/1.3207868861E+18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7698706837468270733)+7.69870683747E+18}{2*-1858709718087348710}=\frac{0}{-3717419436174697420} =0 $

See similar equations:

| 7687568374658=435673857653643-056843x | | y=3(2.7)-1 | | 9=3x=10 | | -3+12x=12x-2 | | -7x+8=4x+4 | | 2/3n=4n-(10/3n)-(1/2) | | 1/1.5=1.75/y | | x2+2x+-24=0 | | 7/3=6/x-2 | | 30(10n-50)=40-20 | | 12x2-8x-2=0 | | 99=0.15x+12 | | 3x2+6x-1=0 | | 10x2-13x-9=0 | | x2+14x-10=0 | | X=4a(7+9) | | 5/3x-1=3/4+x-7/3x-1 | | (2x-9)=(5x+4) | | 5x-24=11x+6 | | 2x-0.9=3.2-4x | | x2+2x-99=0 | | -n^2+1=0 | | x2-12x+9=0 | | 3w+46=w+40 | | x2-15x=18 | | x2-12x=10 | | x2-26x=-9 | | x2+7x=30 | | 2-3x=5x-8 | | 4x2-30+45=0 | | 7+1.25(t)=43.25 | | 3x2-x+11=0 |

Equations solver categories